Every 4-regular graph is acyclically edge-6-colorable
نویسندگان
چکیده
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest integer k such that G has an acyclic edge coloring using k colors. Fiamčik (1978) and later Alon, Sudakov and Zaks (2001) conjectured that a(G) ≤ ∆ + 2 for any simple graph G with maximum degree ∆. Basavaraju and Chandran (2009) showed that every graph G with ∆ = 4, which is not 4-regular, satisfies the conjecture. In this paper, we settle the 4-regular case, i.e., we show that every 4-regular graph G has a(G) ≤ 6.
منابع مشابه
Acyclic edge coloring of subcubic graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using 5 colors. This result is tight since there are...
متن کاملAcyclic 3-Colorings and 4-Colorings of Planar Graph Subdivisions
An acyclic coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color and every cycle in G has vertices of at least three different colors. An acyclic k-coloring of G is an acyclic coloring of G with at most k colors. It is NP-complete to decide whether a planar graph G with maximum degree four admits an acyclic 3-coloring [1]...
متن کاملAcyclically 3-Colorable Planar Graphs
In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...
متن کاملGraphs with maximum degree 6 are acyclically 11-colorable
An acyclic k-coloring of a graph G is a proper vertex coloring of G, which uses at most k colors, such that the graph induced by the union of every two color classes is a forest. In this note, we prove that every graph with maximum degree six is acyclically 11-colorable, thus improving the main result of [12].
متن کاملEvery planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable
An acyclic coloring of a graph G is a coloring of its vertices such that : (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1209.2471 شماره
صفحات -
تاریخ انتشار 2012